maaf belum kami upload , insya Allah segera…. Canadian Mathematical Olympiad (CMO) The CMO is supported by Sun Life Financial Services of Canada, the CMS, and teachers at the university and high school level. The 2010 CMO will take place on Wednesday, March 24th, 2010. The 2009 CMO took place on Wednesday, March 25th, 2009. The winners have been announced. Participation in the CMOThe Canadian Mathematical Olympiad (CMO) is a closed competition whose candidates require an invitation from the Canadian Mathematical Society. This is to ensure, as far as is possible, that students writing the competition are aware of its nature, have had competition experience and can be expected to do reasonably well. There are a number of ways to secure an invitation:
PrizesThe First Prize winner in the 2009 Canadian Mathematical Olympiad receives the Sun Life Cup and $2 000. In addition, the Second Prize winner receives $1 500, the Third Prize winner receives $1 000 and students earning an Honourable Mention (approximately six students) receive $500 each. In order to be eligible for prizes the student:
Succeeding at the CMOIt is important to emphasize that any student who is invited to write the CMO should be aware that success will require mathematics at a higher level than is taught in most schools, and therefore should prepare specifically for the competition. The Society has several resources available, including questions and solutions from previous competitions (available below), books in the ATOM Series and the journal Crux Mathematicorum with Mathematical Mayhem, which is strongly recommended. |
Tag Archives: problem
Model Pembelajaran problem solving
a. Pengertian
Sebelum memberikan pengertian tentang pengertian problem solving atau pemecahan masalah, terlebih dahulu membahas tentang masalah atau problem. Suatu pertanyaan akan merupakan suatu masalah jika seseorang tidak mempunyai aturan tertentu yang segera dapat dipergunakan untuk menemukan jawaban pertanyaan tersebut.
Munurut Polya (dalam Hudojo, 2003:150), terdapat dua macam masalah :
(1) Masalah untuk menemukan, dapat teoritis atau praktis, abstrak atau konkret, termasuk teka-teki. Kita harus mencari variabel masalah tersebut, kemudian mencoba untuk mendapatkan, menghasilkan atau mengkonstruksi semua jenis objek yang dapat dipergunakan untuk menyelesaikan masalah tersebut. Bagian utama dari masalah adalah sebagai berikut. Continue reading
Pendekatan Problem Open Ended
Problem Open Ended adalah pembelajaran pendekatan terbuka yang memberikan kebebasan individu untuk mengembangkan berbagai cara dan strategi pemecahan masalah sesuai dengan kemampuan masing-masing
peserta didik (dalam Suherman, 2003:124). Pembelajaran berbasis problem open ended memberikan ruang yang cukup bagi peserta didik untuk mengeksplorasi permasalahan sesuai kemampuan, bakat, dan minatnya, sehingga peserta didik yang memiliki kemampuan yang lebih tinggi dapat berpartisipasi dalam berbagai kegiatan matematika, dan peserta didik dengan kemampuan lebih rendah masih dapat menikmati kegiatan matematika sesuai dengan kemampuannya.
Shimada (dalam Suherman, 2003:124), menyatakan bahwa dalam pembelajaran matematika, rangkaian dari pengetahuan, keterampilan, konsep, prinsip, atau aturan diberikan kepada peserta didik biasanya melalui
langkah demi langkah. Langkah-langkah pembelajaran matematika dengan pendekatan problem open ended adalah sebagai berikut. Continue reading
Download Soal olimpiade Matematika SMP (Australian Junior Mathematics olympiad) 2008-2009
UWA, with the Australian Mathematical Olympiads Committee, is hosting the 2010 WA Junior Mathematics Olympiad for all bright Year 9 and exceptional Year 8 students.
The Olympiad is a WA high school competition with teams of four students (Year 9 or below) representing their schools.
The aim of the competition is to identify the most gifted students in Mathematics.
contoh soal :
- A certain 2-digit number x has the property that if we put a 2 before it and a 9 afterwards we get a 4-digit number equal to 59 times x. What is x? [2 marks]
- Four friends go shing and catch a total of 11 sh. Each person caught at least one sh. The following ve statements each have a label from 1 to 16. What is the sum of the labels of all the statements which must be true?
1: One person caught exactly 2 sh.
2: One person caught exactly 3 sh.
4: At least one person caught fewer than 3 sh.
8: At least one person caught more than 3 sh.
16: Two people each caught more than 1 sh. [2 marks]
soal olimpiade matematika smp (australia) dan pembahasannya yang bisa di unduh: