Soal Olimpiade Matematika 4

soal 1
Buktikan bahwa jika p dan p + 2 keduanya bilangan prima lebih besar dari 3, maka 6 merupakan faktor dari p + 1.
(Sumber : Canadian Mathematical Olympiad 1973)

Solusi :
Karena merupakan tiga bilangan bulat berurutan maka salah satu dari p, p + 1 dan p + 2 pasti ada yang habis dibagi 3. Karena semuanya lebih dari 3 dan p serta p + 2 adalah bilangan prima maka dapat dipastikan p + 1 merupakan bilangan kelipatan 3. Karena merupakan dua bilangan bulat berurutan maka salah satu dari p + 1 dan p + 2 pasti habis dibagi 2. Karena p + 2 bilangan prima maka p + 1 habis dibagi 2. Karena p + 1 habis dibagi 2 dan juga habis dibagi 3 serta 2 dan 3 relatif prima maka p + 1 akan habis dibagi 2 ⋅ 3 = 6. Terbukti bahwa 6 adalah faktor dari p + 1.

soal 2
Jika a679b adalah bilangan lima angka yang habis dibagi 72, tentukan nilai a dan b.
(Sumber : Canadian Mathematical Olympiad 1980)

Solusi :
72 = 9 ⋅ 8. Karena 9 dan 8 relatif prima maka a679b harus habis dibagi 8 dan 9. Karena a679 habis dibagi 8 maka 79b habis dibagi 8. Agar 790 + b habis dibagi 8 maka b = 2. Karena a6792 habis dibagi 9 maka a + 6 + 7 + 9 + 2 habis dibagi 9. Nilai a yang memenuhi hanya 3. Jadi bilangan tersebut adalah 36792.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s